
Prospects for Document Retrieval using
Formal Concept Analysis

Peter Becker, Peter Eklund

Knowledge, Visualization and Ordering Laboratory (KVO)
Distributed Systems Technology Centre (DSTC)

GRIFFITH UNIVERSITY
PMB 50 Gold Coast 9726, Australia

pbecker@dstc.edu.au, peklund@dstc.edu.au

Abstract

Formal Concept Analysis is a technique based on
lattice theory that is well suited for document re-
trieval. The structure of the concept lattice created
maps to a query in a natural way and refinements
can be found easily. These refinements are ensured
to be smaller but never empty. From the lattice
structure a ranking on the documents can be found
to give results that are related but do not lexically
match.

Keywords Document Management, Information
Retrieval, Formal Concept Analysis

1 Introduction

Formal Concept Analysis (FCA) is a technique de-
rived from lattice theory that has been successfully
used for various analysis purposes. More recently
many researchers have started applying this tech-
nique for retrieval systems with very promising re-
sults.

The lattice created by Formal Concept Anal-
ysis is similar to the tree created by hierarchical
clustering approaches but, due to the properties of
a lattice, it does not suffer from one of the main
problems of hierarchical approaches: documents
indexed in a similar fashion will always be close
in the concept lattice while they can be distant in
a tree due to the limitations of the structure.

The distances in the lattice can also be used to
offer a similarity ranking to the user of a retrieval
system. First results indicate that this approach
is very successful. Documents rated as similar by
such systems are rated as similar by the users and
vice versa.

Formal Concept Analysis will be introduced
shortly in Section 2. In Section 3 we show how a
concept lattice can be used for document retrieval
purposes – an idea that is extended in Section 4 to
include a notion of document vicinity useable for

Proceedings of the Sixth Australasian Docu-

ment Computing Symposium, Coffs Harbour,

Australia, December 7, 2001.

ranking. In Section 5, a reference implementation
is introduced which a short discussion of the
indexing approaches considered in this project.
Section 6 gives a concluding discussion of this
paper.

2 Formal Concept Analysis

FCA[7] has a long history as a technique of data
analysis ([10], [9]). Following this methodology,
data is organized as a table (see Fig. 1) and is
modeled mathematically as multi-valued context,
(G,M,W, I) where G is a set of objects, M is a
set of attributes, W is a set of attribute values and
I is a relation between G, M , and W such that
if (g,m,w1) and (g,m,w2) then w1 = w2. In the
table there is one row for each object, one column
for each attribute, and each cell is either empty or
contains an attribute value.

Organization over the data is achieved via con-
ceptual scales. A conceptual scale maps attribute
values to new attributes and is represented by a
mathematical entity called a formal context. A
formal context is a triple (G,M, I) where G is a set
of objects, M is a set of attributes, and I is a binary
relation between the objects and the attributes, i.e.
I ⊆ G × M . A conceptual scale is defined for a
particular attribute of the multi-valued context: if
Sm = (Gm,Mm, Im) is a conceptual scale ofm ∈M
then we require that Wm ⊆ Gm. The conceptual
scale can be used to produce a summary of data
in the multi-valued context as a derived context.
The context derived by Sm = (Gm,Mm, Im) wrt to
plain scaling from data stored in the multi-valued
context (G,M,W, I) is the context (G,Mm, Jm)
where for g ∈ G and n ∈Mm

gJmn ⇔: ∃w ∈W : (g,m,w) ∈ I
and (w, n) ∈ Im

Scales for two or more attributes can be combined
together in a derived context. Consider a set of
scales, Sm, where each m ∈ M gives rise to a
different scale. The new attributes supplied by each



scale can be combined together using a special type
of union:

N :=
⋃
m∈M

Mm × {m}

Then the formal context derived from combining
all these scales together is:

gJ(m,n) ⇔: ∃w ∈W : (g,m,w) ∈ I
and (w, n) ∈ Im

The derived context is then displayed to the user
as a lattice of concepts. A concept of a formal
context (G,M, I) is a pair (A,B) where A ⊆ G,
B ⊆ M , A = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}
and B = {m ∈ M | ∀g ∈ A : (g,m) ∈ I}. For
a concept (A,B), A is called the extent and is the
set of all objects that have all of the attributes in
B. Similarly, B is called the intent and is the set
of all attributes possessed in common by all the
objects in A. As the number of attributes in B
increases, the concept becomes more specific, i.e. a
specialization ordering is defined over the concepts
of a formal context by:

(A1, B1) ≤ (A2, B2) :⇔ B2 ⊆ B1

In this representation more specific concepts
have larger intents and are considered “less than”
(<) concepts with smaller intents. The same
partial ordering is achieved by considering extents,
in which case more specific concepts have smaller
extents. The partial ordering over concepts is
always a lattice. Partial orders are commonly
drawn using a Hasse diagram. A property of
concept lattices can be exploited to achieve an
efficient labelling. Each attribute has a single
maximal concept (wrt the specialization ordering)
possessing that attribute. If attribute labels are
only attached to their maximal concepts then the
intent of a concept can be determined by collecting
labels from all greater concepts. A similar
situation is achieved for objects. Each object has
a minimal concept to which its label is attached
and the extent of a concept can be determined by
collecting labels from all lesser concepts. Attribute
and object labels are disambiguated by attaching
object labels from below and attribute labels from
above.

Consider Fig. 1. The set of objects in the
shown multi-valued context is a set of documents
each denoted by a number: G = {1, 2, 3, 4, 5, 6}.
For simplicity we consider just one attribute,
giving M = {”Keywords”}, where the attribute
itself has different sets of keywords as values,
the set of values is W = {{FCA}, {Retrieval},
{FCA,Retrieval}, {FCA, Scales}} and the
incidence relation I is given in the table cells.

The right table shows one of the most direct
ways of scaling for this kind of attribute where each

possible member is mapped onto a single-valued
attribute. In this way we can split an attribute
with values given as a set into a set of boolean
values showing the signature of the sets. Since we
assume no dependencies on the different values we
allow each combination thereby getting the cube as
the lattice for the scale, as shown in the lower right
corner of Fig. 1.

Applying this scale to the original context we
get a lattice as depicted in the lower left corner.
In this diagram we can easily see some relations
between the attributes and the documents, e.g. the
position of the attribute “Scales” below “FCA” in-
dicates the implication that each document indexed
with “Scales” is indexed with “FCA”, too. The
position of the document “5” below “Retrieval”
and “FCA” indicates that this document is indexed
with these two keywords, in this way we can re-
produce the original data from the diagram – no
information has been lost in this scaling process.

Another typical scaling technique is to map nu-
merical or similar values onto intervals as shown in
Table 1. Here we deliberately reduce the informa-
tion in the original data to reduce the number of
attributes created by the scale. Note that we create
attribute implications using this scale, thereby cre-
ating inference chains in the lattice. For example
every document written in December 2000 will be
written in the year 2000, too. Therefore the node
labeled “written Dec 2000” will be below the node
labeled “written in 2000”.

3 Concepts and Queries

Although Formal Concept Analysis has been
mainly used for data analysis purposes it has a
number of features that make it well suited for
retrieval. When using Formal Concept Analysis
as a retrieval tool one can see a concept as a
representation of a query state, where the intent
of the concept represents the query itself and the
extent represents all documents that match the
query.

The first interesting feature that can be found
in the lattice structure is that adding additional
attributes into a query will always move the query
state to some concept below the current state,
which maps mathematically to the definition of
the subconcept relation. To find all query states
that model such extensions of the current query
we have to find all subconcepts of the current
position.

By comparing the intents of the concepts along
the edges we can map the attributes that can be
added to the new position in the lattice. In the
example given in Fig. 1 the possible refinements
for a query “FCA” would be “Retrieval”, pointing
to the concept with document 5 in the extent and



Document

11

22

33

44

55

66

Keywords

{FCA}

{Retrieval}

{FCA, Scales}

{Retrieval}

{FCA, Retrieval}

{FCA}

{}

{FCA}

{Retrieval}

{Scales}

{FCA, Scales}

...

FCA Retrieval Scales

XX

XX

XX

XX XX

FCA

Scales

Retrieval

1,62,4

55 33

FCA

Scales

Retrieval

Multi−valued Context Conceptual Scale

Diagram Depicting Lattice of
Conceptual ScaleConcept Lattice derived from 

the input data and the Scale

Figure 1: Example showing the process of generating a derived concept lattice from a multi-context and
a conceptual scale for the attribute Keywords.

“Scales”, pointing to the concept labeled with this
attribute.

The bottom element of the lattice is another
query state that might be considered as refinement
for the current state, it will be reached by adding
both “Retrieval” and “Scales” to the query. But
since there is no document indexed with both of
these keywords the bottom element has no extent
and therefore we do not consider it as a valid refine-
ment to avoid having an empty result set. Every
query that contains some contradiction, i.e. queries
for something that does not exist in the data set
will point to a bottom element with an empty ex-
tent and we can avoid offering these refinements
easily.

Another useful feature when finding query re-
finements this way is that once we found the states
that are possible refinements we have the size of the
new result set which is the size of the extent of the
concept that will be reached. Using this feature of
the lattice we can give the user the information on
the size of the next result set before she chooses a
refinement, a front-end can allow sorting or filtering
the refinements by this size.

The last interesting feature of a concept lattice
used in document retrieval is that the extent of

a subconcept will always be a true subset of the
current concept. In terms of retrieval this means
that the result set of a refinement will always be a
true subset of the original result set. If an attribute
is not in the current query, but is true for all docu-
ments in the current result set, it will implicitely be
in the current query state since it will be positioned
at the current concept or a superconcept.

These features ensure that refinements found
using Formal Concept Analysis will always be true
refinements in the sense that the new result set will
be smaller, but the result set can be ensured to be
never empty. In addition to avoiding the empty
result set one can tell the new size of the result
sets for all refinements. This gives the user more
information to make her decision.

4 Concept Lattice Ranking

Another property of a concept lattice can be used
to create a ranking on documents and to find doc-
uments that do not precisely match a query ([4]).
Whenever two documents have similar attributes
they will be located in concepts close together in
the lattice, e.g. the documents 3 and 1 in Fig. 1
are close together since they differ only in the ad-
ditional attribute “Scales” for document 3, while



Date of Creation written written written week
in 2000 Dec 2000 51/2000

11 Nov 2000 ×
24 Nov 2000 ×
13 Dec 2000 × × ×
22 Dec 2000 × ×
07 Jan 2001

Table 1: Example scale for a date. The attributes create a chain of refinements.

the distance between the documents 3 and 2 is far
bigger – they have no attribute in common.

This property can be used to define a distance
on the documents. There are different ways to
define the distance, depending on the semantic used
for a query. Generally, all documents in the extent
of a concept are matches to all attributes in the
query, which means all documents labeled at any
concept below the current query state are matches
for the query. Following an edge upwards in the
lattice diagram to some concept, not below the cur-
rent query state, means loosing at least one match.
Documents labeled at one of these nodes remain
close to the query so they can be ranked as pos-
sible matches with a lower ranking than the exact
matches.

In addition to this approach one might consider
documents labeled directly at the current query
state as better hits than documents attached to
subconcepts of the current query state, since the
latter match more attributes and are therefore less
specific. These documents are probably a better
match than documents found by going upwards,
although they might be considered less exact hits.

Another approach to refine this distance mea-
sure is to use the sizes of the intent and the extent
into the ranking calculation. If only one document
is found in a neighbour this might be considered as
more relevant to the current query as other docu-
ments in a concept as close with a larger difference
in the extent. A dual argument can be given for the
attributes: if the intent differs significantly between
two concepts, we might consider them as more dif-
ferent than two concepts with only slight changes
to the intent. Since the lattice ensures the subset
relations for upper and lower neighbours comparing
the sizes is sufficient for comparing the sets.

Once these distances are calculated the docu-
ments can be presented ordered by this ranking.
Experiments show that this kind of ranking might
be superior to classic approaches like best-match
ranking and hierarchical clustering-based ranking,
the latter suffering from the limitations of the un-
derlying tree structure.

5 The Score Project

A reference implementation for a Web-based
system using the techniques described has
been implemented and is accessible on the web
(http://meganesia.int.gu.edu.au/projects/score).
At the time of writing it is still in a evolving state
but shows the basic features described in Section 3.

This system is implemented in different
subsystems using a relational database as central
storage for the indexing information. The
architecture of the system allows the combination
of different indexers and frontends while keeping
the Formal Concept Analysis implementation,
currently written in Java. The frontend uses
Java Servlets to create HTML pages that are
displayed in any Web browser. The indexer is a
simple Perl script communicating with the WebKB
ontology server (http://www.webkb.org) using the
UNIX command line to find keywords suitable for
indexing.

The data set used is a mailing list archive for
network communications, keywords are English
nouns taken from an ontology of communication
terms. The keywords are stemmed using a simple
stemming technique and the information on
synonyms in the ontology is used but no other text
indexing techniques are used yet.

It is planned to implement different indexing
techniques and apply them on different data sets,
from a large collection of short news articles to an
online book which can be addressed on the para-
graph level. The indexing techniques shall involve
ontologies and classic text retrieval techniques like
using inverse document frequency and stemming.
Kim and Compton use ripple-down rules ([8]) to
achieve well-structured interactive indexing.

The major question for the Formal Concept
Analysis module is whether or not this approach
is scalable to large object and attribute numbers.
The current implementation is still completely
memory-based, we are not aware of any research
trying to handle large lattices. Storing the
information in a relational database system or
distributing the lattice using direct lattice products
might be options to scale well.

For the frontend other questions arise. One
of the main questions is how to find semantically

http://meganesia.int.gu.edu.au/projects/score
http://www.webkb.org


useful refinements. One approach found in the lit-
erature is to offer only the lower neighbours of the
current query state as refinements, a graphical in-
terface for this approach is shown by Carpineto
and Romano ([3]). A combination with a classic
retrieval interface can be used to offer the user dif-
ferent ways of refinements to avoid problems with
sets of refinements that are too large, see [8] as
example.

Another option for the frontend can be the inte-
gration of complete line diagrams as e.g. presented
by Cole, Eklund and Stumme ([5]). Using tech-
niques developed for an interactive data analysis
program called Cernato ([2]) it might be possible
to offer further interaction with the line diagrams
suitable even for inexperienced users. Ferré and
Ridoux model the frontend as command-line inter-
face ([6]) using the metaphor of a hierachical file
system when navigating the lattice while another
approach tries to integrate this retrieval technique
into the UNIX desktop KDE ([1]) using a list-based
frontend.

The Score system with its open architecture and
major parts Open Sourced in the Tockit project
(see http://tockit.sourceforge.net) should offer
solid ground for comparing different approaches in
the indexing and the frontend parts.

6 Summary

Formal Concept Analysis has many properties that
are useful for document retrieval. In combination
with different indexing techniques and different
user interfaces promising research implementations
have been created. The lattice structure created
by Formal Concept Analysis does not suffer
from the problem of having to drop edges as
other tree-based techniques do and the graphical
presentations used in other applications of Formal
Concept Analysis might be useful as addition to a
classical text-based frontend.

With the Tockit project presented here a com-
mon Open Source platform for working on For-
mal Concept Analysis should be created and Score
should be a reference platform for different index-
ing and retrieval approaches using Formal Concept
Analysis. More detailed results are expected to
follow.

References

[1] P. Becker. Einsatz der Formalen
Begriffsanalyse zur Dokumentennavigation.
http://www.peterbecker.de/texts/
becker99.pdf, 1999.

[2] P. Becker. Multi-dimensional representations
of conceptual hierarchies. In Conceptual Struc-
tures — Extracting and Representing Seman-

tics, Contributions to ICCS 2001, pages 145–
158, 2001.

[3] C. Carpineto and G. Romano. Effective re-
formulation of boolean queries with concept
lattices. In Flexible Query Answering Systems
FQAS’98, pages 277–291, Berlin Heidelberg,
1998. Springer–Verlag.

[4] C. Carpineto and G. Romano. Order-
theoretical ranking. Journal of the American
Society for Information Science (JASIS), Vol-
ume 51, Number 7, pages 587–601, 2000.

[5] R. Cole, P. Eklund and G. Stumme. CEM —
a program for visualization and discovery in
email. In Proceedings of PKDD 2000, number
1910 in LNAI, pages 367–374, Berlin, 2000.
Springer-Verlag.

[6] S. Ferré and O. Ridoux. Searching for objects
and properties with logical concept analy-
sis. In Conceptual Structures — Broaden-
ing the Base, ICCS 2001, number 2120 in
LNAI, pages 187–201, Berlin Heidelberg, 2001.
Springer–Verlag.

[7] B. Ganter and R. Wille. Formal Concept Anal-
ysis — Mathematical Foundations. Springer–
Verlag, Berlin Heidelberg, first edition, 1999.

[8] M. Kim and P. Compton. A web-based brows-
ing mechanism based on conceptual struc-
tures. In Conceptual Structures — Extracting
and Representing Semantics, Contributions to
ICCS 2001, pages 47–60, 2001.

[9] W. Kollewe, M. Skorsky, F. Vogt and R. Wille.
TOSCANA — ein Werkzeug zur begrifflichen
Analyse und Erkundung von Daten. In
R. Wille and M. Zickwolff (editors), Be-
griffliche Wissensverarbeitung — Grundfra-
gen und Aufgaben, pages 267–288, Mannheim,
1994. B. I.–Wissenschaftsverlag.

[10] Frank Vogt and Rudolf Wille. Toscana —
a graphical tool for analyzing and exploring
data. In Roberto Tamassia and Ioannis G.
Tollis (editors), Graph Drawing, pages 226–
233, Heidelberg, 1995. Springer–Verlag.

http://tockit.sourceforge.net
http://www.peterbecker.de/texts/becker99.pdf
http://www.peterbecker.de/texts/becker99.pdf

	Introduction
	Formal Concept Analysis
	Concepts and Queries
	Concept Lattice Ranking
	The Score Project
	Summary

